Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States.

نویسندگان

  • Niyazi Bulut
  • François Lique
  • Octavio Roncero
چکیده

The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions and dynamics in Li+Li2 ultracold collisions.

A potential energy surface for the lowest quartet electronic state ((4)A(')) of lithium trimer is developed and used to study spin-polarized Li+Li(2) collisions at ultralow kinetic energies. The potential energy surface allows barrierless atom exchange reactions. Elastic and inelastic cross sections are calculated for collisions involving a variety of rovibrational states of Li(2). Inelastic co...

متن کامل

Light-induced electron spin polarization in vanadyl octaethylporphyrin: II. Dynamics of the excited states.

The dynamics of the low-lying excited states of vanadyl octaethylporphyrin (OEPVO) in frozen solution is investigated by transient electron paramagnetic resonance (TREPR). The observation of spin-polarized TREPR spectra from the lowest excited trip-quartet state of OEPVO, reported in the preceding paper, opens a new avenue for investigation of the excited states of such molecules. Here, a model...

متن کامل

Electronic structure of the 1,3,5-tridehydrobenzene triradical in its ground and excited states

The ground and low-lying electronic states of the 1,3,5-tridehydrobenzene triradical are characterized by electronic structure calculations. It is found that the ground state is the A1 doublet of C2v symmetry. Another doublet state lies 0.1–0.2 eV higher in energy, and the lowest quartet state of D3h symmetry is 1.2–1.4 eV higher in energy. Both doublets are degenerate at D3h geometries and und...

متن کامل

Electronic effects on singlet-triplet energy splittings in aryl-cyclopentadienylidenes

Energy gaps, AXsar (X=E, H and G) (AX.,.,-=lia,„,,,InrX“dpka,) between single (s) and triplet (I) states werecalculated at B3LTP/6-3 I 1.HO" level of theory. Our results showed that electron donating substituents(G = -NHz, -OH. -CH), -F, -Cl and -Br) at phenyl group cause to increase and electron withdrawingsubstiluents (G -CF2. and -NO:) lead to decrease the singlet-triplet energy gaps of Ar -...

متن کامل

Spin controlled atom-ion inelastic collisions

The control of ultracold collisions between neutral atoms is an extensive and successful field of study. The tools developed in this field allow for ultracold chemical reactions to be managed using magnetic fields1, light fields2 and spin-state manipulation of the colliding particles3 among other methods. Control of chemical reactions in ultracold atom-ion collisions is a young and growing fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 119 50  شماره 

صفحات  -

تاریخ انتشار 2015